Geometric inequalities for CR-warped product submanifolds of locally conformal almost cosymplectic manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doubly Warped Product CR-Submanifolds in Locally Conformal Kähler Manifolds

Mathematics Subject Classification (2000): 53C25, 53C40, 53C42.

متن کامل

Warped Product Cr-submanifolds of Lp-cosymplectic Manifolds

In this paper, we study warped product CR-submanifolds of LP-cosymplectic manifolds. We have shown that the warped product of the type M = NT × fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant submanifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have obtained a characterization result for a CR-submanifold to be locally a CRwarped product.

متن کامل

Warped product submanifolds of cosymplectic manifolds

Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000...

متن کامل

Inequality for Ricci curvature of certain submanifolds in locally conformal almost cosymplectic manifolds

Let M̃ be a (2m+ 1)-dimensional almost contact manifold with almost contact structure (φ,ξ,η), that is, a global vector field ξ, a (1,1) tensor field φ, and a 1-form η on M̃ such that φ2X =−X +η(X)ξ, η(ξ) = 1 for any vector field X on M̃. We consider a product manifold M̃×R, whereR denotes a real line. Then a vector field on M̃×R is given by (X , f (d/dt)), where X is a vector field tangent to M̃, t ...

متن کامل

A Geometric Inequality for Warped Product Semi-slant Submanifolds of Nearly Cosymplectic Manifolds

Recently, we have shown that there do not exist warped product semi-slant submanifolds of cosymplectic manifolds [K.A. Khan, V.A. Khan and Siraj Uddin, Balkan J. Geom. Appl. 13 (2008), 55–65]. The nearly cosymplectic structure generalizes the cosymplectic one. Therefore the nearly Kaehler structure generalizes the Kaehler structure in almost Hermitian setting. It is interesting that the warped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2019

ISSN: 0354-5180,2406-0933

DOI: 10.2298/fil1903741a